PHYSICS FORMULAS

SCIENTIFIC NOTATION

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Power of ten</th>
<th>E notation</th>
<th>Decimal form</th>
</tr>
</thead>
<tbody>
<tr>
<td>tera</td>
<td>T</td>
<td>10^12</td>
<td>E + 12</td>
<td>1,000,000,000,000</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^9</td>
<td>E + 09</td>
<td>1,000,000,000</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^6</td>
<td>E + 06</td>
<td>1,000,000</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^3</td>
<td>E + 03</td>
<td>1,000</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^2</td>
<td>E + 02</td>
<td>100</td>
</tr>
<tr>
<td>deka</td>
<td>da</td>
<td>10</td>
<td>E + 01</td>
<td>10</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10^-1</td>
<td>E – 01</td>
<td>0.1</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>10^-2</td>
<td>E – 02</td>
<td>0.01</td>
</tr>
<tr>
<td>mili</td>
<td>m</td>
<td>10^-3</td>
<td>E – 03</td>
<td>0.001</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>10^-6</td>
<td>E – 06</td>
<td>0.000001</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^-9</td>
<td>E – 09</td>
<td>0.00000001</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>10^-12</td>
<td>E – 12</td>
<td>0.0000000001</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>10^-15</td>
<td>E – 15</td>
<td>0.0000000000001</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>10^-18</td>
<td>E – 18</td>
<td>0.000000000000001</td>
</tr>
</tbody>
</table>

KINEMATIC FORMULAS

Magnitude: \[||\mathbf{R}|| = \sqrt{(Rx^2 + Ry^2)} \]

Direction: \[\tan \theta = \frac{Ry}{Rx} \]

\[V_0 \theta = (V_0 \cos \theta, V_0 \sin \theta) \]

Velocity:

\[V_{av} = \left(\frac{d}{t} \right) \]

: \(d \) = distance, \(t \) = elapsed time

\[V_{BA} = V_{BE} - V_{AE} \]

: relative velocity

\[V_{av} = \left(\frac{\Delta x}{\Delta T} \right) = \left(\frac{x-x_0}{T-T_0} \right) \]

: Velocity average

\[V = \left(\frac{dx}{dt} \right) \]

: Instantaneous velocity

Acceleration:

\[A_{av} = \left(\frac{\Delta V}{\Delta T} \right) \]

: \(V = \) velocity, \(t = \) elapsed time

\[A_{av} = \left(\frac{\Delta v}{\Delta T} \right) = \left(\frac{V-V_0}{T-T_0} \right) \]

: Acceleration average

\[A = \left(\frac{dv}{dt} \right) \]

: Instantaneous acceleration

Constant acceleration:

\[x = \frac{1}{2}a_ot^2 + v_o t + x_o \rightarrow \theta = \frac{1}{2}at^2 + \omega_o t + \theta_o \]

\[v = a_0 t + v_o \rightarrow \omega = at + \omega_o \]

\[v^2 - v_o^2 = 2a(\Delta x) \rightarrow \omega^2 - \omega_o^2 = 2a(\Delta \theta) \]
PHYSICS FORMULAS

Newton 2nd law: \[\sum F = ma \rightarrow \sum T = I\alpha \]
: \(F \) = force, \(m \) = mass, \(a \) = acceleration
: \(T \) = torque, \(I \) = moment of inertia, \(\alpha \) = rotational acceleration

Work:
\[W = F \cdot \Delta x \]
: \(w \) = work, \(F \) = force, \(\Delta x \) = distance

Universal Gravitation:
\[F = G \frac{m_1 \cdot m_2}{r^2} \]
: \(F \) = force of attraction, \(m_1 \cdot m_2 \) = product of masses
\(G \) = grav const \(r \) = radial distance between 2 masses

Centripetal Force:
\[F = \frac{m \cdot v^2}{r} \]
: \(F \) = centripetal force, \(m \) = mass, \(v \) = velocity, \(r \) = radius

Pendulum:
\[T = 2\pi\sqrt{\frac{l}{g}} \]
: \(T \) = period, \(l \) = length, \(g \) = acceleration of gravity

Mechanical heat:
\[W = J \cdot Q \]
: \(W \) = work, \(Q \) = heat, \(J \) = mech equiv of heat

ENERGY RELATIONSHIPS

Kinetic Energy
\[KE = \frac{1}{2}m \cdot v^2 \]
: \(KE \) = kinetic energy, \(m \) = mass, \(v \) = velocity

Potential Energy
\[U = m \cdot g \cdot \Delta y \]
: \(U \) = potential energy, \(m \) = mass, \(g \) = acceleration of gravity

Conservation of energy
\[\sum E_{in} = \sum E_{out} \]
: \(E_{in} \) = energy in, \(E_{out} \) = energy out

OPTICAL RELATIONSHIPS

Wave formula:
\[v = f \cdot \lambda \]
: \(v \) = wave speed, \(f \) = frequency, \(\lambda \) = wave length

Images:
\[\frac{S_o}{S_i} = \frac{D_o}{D_i} \]
: \(S_o \) = object size, \(S_i \) = image size, \(D_o \) = object

Focal length:
\[\frac{1}{f} = \frac{1}{D_o} + \frac{1}{D_i} \]
: \(f \) = focal length, \(D_o \) = object, \(D_i \) = image distance

Snells law:
\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]
: \(n_1 \) = refractive index, \(\theta \) = angle between ray to surface

ELECTRICITY AND MAGNETISM

Electric current:
\[I = \frac{q}{t} \]
: \(I \) = current, \(q \) = charge, \(t \) = time

Coulombs law:
\[F = k \frac{q_1 q_2}{d^2} \]
: \(F \) = force, \(k \) = coulombs constant, \(q \) = charge, \(d \) = dist

Capacitance:
\[C = \frac{q}{V} \]
: \(C \) = capacitance, \(V \) = potential difference, \(q \) = charge

Ohms law:
\[E = I \cdot R \]
: \(E \) = emf of source, \(I \) = Current, \(R \) = resistance

Induced EMF:
\[E = -N \frac{d\phi}{dt} \]
: \(N \) = number of turns, \(\frac{d\phi}{dt} \) = change in flux

Induced EMF:
\[E = B \cdot L \cdot V \]
: \(E \) = induced emf, \(L \) = length, \(V \) = velocity

Instantaneous voltage:
\[e = E_{max} \sin \theta \]
: \(e \) = instantaneous voltage, \(E_{max} \) = max voltage

Instantaneous current:
\[i = I_{max} \sin \theta \]
: \(i \) = instantaneous current, \(I_{max} \) = max current